ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Seokho H. Kim, George F. Flanagan
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 230-239
Technical Paper | 2007 Space Nuclear Conference / Reactor Safety | doi.org/10.13182/NT09-A8837
Articles are hosted by Taylor and Francis Online.
A hydrodynamics model has been developed to study extreme deformation of the space reactor system impacting on the ground with a high velocity. Two-dimensional geometry models for a monolithic core and a pinned core reactor have been developed with dynamic material models, including the material constitutive models and the equation-of-state models. Calculations have been performed for the reactor impacting onto dry sand at 230 and 150 m/s. A pinned core has a much larger fraction of gas volume in the reactor core and thus collapses faster than a monolithic core. The 150 m/s impact velocity case reveals that the gas coolant channels survive in a monolithic core even though the reactor is massively deformed. In a pinned core, however, most of the gas coolant region collapses with intact or partially collapsed fission product gas cores that are protected by solid UO2 fuel. The sand density varies as it is being compressed. Generally, sand beneath the impacting reactor has a higher density as it is compressed. In addition to consideration of global criticality, it is necessary to investigate local criticality. Because of nonuniform distribution of the gas coolant channels in a deformed monolithic core for the 230 m/s impact velocity case, it may be possible to induce criticality locally in those regions where collapse is more severe. It is not straightforward to make an engineering judgment based solely on impact analysis regarding which core concept is more susceptible to criticality events. The current impact study reveals that a pinned core reactor collapses faster than a monolithic core reactor. A reactor that collapses faster is thought to be more susceptible to producing a criticality. However, a monolithic core reactor with much higher mass and kinetic energy develops much higher compaction in the dry sand beneath the reactor. This means that it is expected to better reflect fast neutrons from the bottom boundary where the sand density for a monolithic core impact becomes much higher than for a pinned core impact. It is strongly recommended that neutronics calculations be performed to determine the susceptibility of criticality for the massively deformed nuclear reactors including appropriate reflecting boundary conditions.