ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Piyush Sabharwall, Vivek Utgikar, Fred Gunnerson
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 197-200
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT09-A7406
Articles are hosted by Taylor and Francis Online.
The effect of the mass flow rate at constant velocity on the convective heat transfer coefficient of an incompressible fluid in a turbulent flow regime is presented with the help of dimensional analysis. The heat transfer coefficient decreases by ~10% with a threefold increase in the mass flow rate under these conditions, based on the commonly used Dittus-Boelter correlation for estimation of the heat transfer coefficient. On the other hand, an increase in the heat transfer coefficient is observed if the area is maintained constant. Doubling the mass flow rate will result in a 92% increase in the heat transfer coefficient. However, there is a concomitant increase in the pressure drop, proportional to the mass flow rate raised to 0.95. The pressure drop is predicted to decrease for the constant velocity case with an inverse dependence on the mass flow rate. The pressure drop considerations may be critical in certain situations (elevation of boiling point in case of a boiling heat transfer medium), and any benefit derived from the higher heat transfer coefficient may be lost because of the higher pressure drop across the heat exchanger in the constant area case.