ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Piyush Sabharwall, Vivek Utgikar, Fred Gunnerson
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 197-200
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT09-A7406
Articles are hosted by Taylor and Francis Online.
The effect of the mass flow rate at constant velocity on the convective heat transfer coefficient of an incompressible fluid in a turbulent flow regime is presented with the help of dimensional analysis. The heat transfer coefficient decreases by ~10% with a threefold increase in the mass flow rate under these conditions, based on the commonly used Dittus-Boelter correlation for estimation of the heat transfer coefficient. On the other hand, an increase in the heat transfer coefficient is observed if the area is maintained constant. Doubling the mass flow rate will result in a 92% increase in the heat transfer coefficient. However, there is a concomitant increase in the pressure drop, proportional to the mass flow rate raised to 0.95. The pressure drop is predicted to decrease for the constant velocity case with an inverse dependence on the mass flow rate. The pressure drop considerations may be critical in certain situations (elevation of boiling point in case of a boiling heat transfer medium), and any benefit derived from the higher heat transfer coefficient may be lost because of the higher pressure drop across the heat exchanger in the constant area case.