ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Nader M. A. Mohamed
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 187-196
Technical Papers | Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A7405
Articles are hosted by Taylor and Francis Online.
A procedure was developed for measuring the concentration of copper, in the Instrumental Neutron Activation Analysis method, by measuring the produced 64Cu isotope activity (after irradiation) from the annihilation peak (511-keV peak). In this procedure the number of counts under the annihilation peak is divided into two categories: (a) counts coming from the decay of the 64Cu isotope and (b) counts coming from the interactions of energetic photons (with energies >1.022 MeV, the pair production threshold) with the detector and surrounding materials. The last category is evaluated and subtracted from the annihilation peak counts, and the rest of the counts are used to calculate the activity of 64Cu. Measuring copper concentration using this method will improve its detection limit. The method was validated by measuring the concentration of copper in four International Atomic Energy Agency (IAEA) reference materials: Soil-7, Lake Sediment, Human Hair, and Hay Powder. The maximum deviation between the results and that given in IAEA certificates is 4.4%. The method decreased the detection limits of the four samples to ~3, ~4.5, ~0.6, and ~1 mg/kg, respectively.