ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Abdullah Kadri, Raveendra K. Rao, Jin Jiang
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 156-169
Technical Papers | Nuclear Plant Operations and Control | doi.org/10.13182/NT09-3
Articles are hosted by Taylor and Francis Online.
There are two major barriers in deploying wireless communication systems in nuclear power plants (NPPs): (a) the electromagnetic compatibility (EMC) between the wireless devices and the existing plant instrumentation and control systems, and (b) the high levels of electromagnetic noise and interference from high-powered devices and ionizing radiation sources. In a typical NPP there exist strict regulations that limit transmission power levels to avoid interfering with the sensitive safety systems inside the containment such as ion chambers. This will result in performance degradation of wireless communication systems. This paper proposes a wireless communication scheme based on low-power chirp spread spectrum (CSS) signals, which meet with the EMC requirements of NPPs and also are capable of providing interference rejection. The advantage of such a scheme is that satisfactory performance can be obtained using low levels of transmission power. The structure of the optimal receiver for low-power binary CSS signals and a closed-form expression for asymptotic bit error rate of this receiver are derived. The electromagnetic environment within an NPP is modeled as a Gaussian-Gaussian mixture process, which is based on the measurement data published in a U.S. Nuclear Regulatory Commission Regulation (NUREG). The parameters in the model can be adjusted to suit a particular NPP site.