ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas K. S. Liang, Chung-Yu Yang, Liang-Che Dai
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 146-155
Technical Papers | Thermal Hydraulics | doi.org/10.13182/NT09-A7401
Articles are hosted by Taylor and Francis Online.
In the innovative design of the advanced boiling water reactor (ABWR), conventional recirculation loops are removed and replaced by multiple reactor internal pumps. Therefore, there is no major penetration of the reactor pressure vessel (RPV) below the elevation of the top of active fuel. As a result, an ABWR loss-of-coolant accident (LOCA) can have a decreased impact on reactor safety. Moreover, in the new RPV design the injection points of all the conventional low-pressure emergency core cooling (ECC) systems (ECCSs) are shifted out of the core shroud to the downcomer and feedwater line as a new low-pressure ECCS, namely, a low-pressure flooder (LPFL). Consequently, the net hydraulic head built inside the downcomer will be the only driving force to bring the low-pressure ECC water into the core shroud during a large-break LOCA. In the analysis of a feedwater line break with RELAP5-3D/K, it was occasionally found that the hydraulic head built in the downcomer might not be great enough to bring the ECC water into the core shroud, and when the mixture water column ascends above the elevation of the feedwater rings, all the water injected by the LPFL will be directly driven to the break on the feedwater line. Fortunately, the capacity of the remaining high-pressure ECC flow directly injected above the core is great enough, and this ECC low-pressure injection bypass phenomenon can be terminated once the high-pressure ECC injection is manually turned off. This phenomenon of low-pressure ECC injection bypass is unexpected in the ABWR design, and it is worth further investigation.