ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hyung Seok Kang, Sang Baik Kim, Min-Hwan Kim, Won-Jae Lee, Hee Cheon No
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 86-100
Technical Paper | Special Issue on Nuclear Hydrogen Production, Control, and Management | doi.org/10.13182/NT09-A6971
Articles are hosted by Taylor and Francis Online.
Regulatory issues are discussed to establish Korean regulations on the safety distance between a very high temperature reactor (VHTR) and a hydrogen production facility. The major issues for the regulations concerning a gas explosion are an overpressure criteria, a regulation philosophy, and an overpressure prediction method. The overpressure can be predicted using empirical correlations of the trinitrotuluene (TNT) equivalent method and the multi-energy method (MEM). A comparison work of the predicted values using these correlations and the Japan Atomic Energy Agency (JAEA) explosion test results was performed to evaluate the applicability of these correlations to a VHTR. The MEM predicts the peak overpressure better than the TNT equivalent method because the explosion test results in a deflagration phenomenon. Thus, the MEM may be used effectively to estimate the peak overpressure for the gas explosion simply. A CFD analysis for the explosion test was also performed to establish an analysis methodology for a gas explosion. A spark ignition model to simulate an electric spark of 40 J in the JAEA explosion test was developed based on an energy conservation law. A sensitivity computational fluid dynamics (CFD) calculation was performed to elucidate the optimized pressure, temperature, and radius value of the spark ignition model. The CFD analysis results showed that the peak overpressure and the flame front time of arrival may be predicted better by the CFD analysis than by the MEM if the proper pressure and radius for the spark ignition model are chosen. So, the CFD analysis may be used as an accurate evaluation tool to provide the three-dimensional information of an overpressure and a time history of the overpressure variation. Therefore, it is recommended that the risk-informed regulation, the MEM, and the CFD analysis method should be used together to determine a safety distance.