ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. D. Middleton, M. S. Kazimi, Min Wah Leung
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 64-75
Technical Paper | Special Issue on Nuclear Hydrogen Production, Control, and Management | doi.org/10.13182/NT09-A6969
Articles are hosted by Taylor and Francis Online.
A preliminary study is conducted that considers capturing carbon dioxide from fossil-fired power plants and combining it with nuclear hydrogen in order to produce alternative liquid fuels for transportation.We estimate the quantity of carbon dioxide that would be emitted by fossil-fired power plants in the future. We then use this information to determine how much ethanol or methanol can be created if enough hydrogen is made available. Using the quantity of hydrogen required and the thermodynamics of the reactions involved, we estimate the nuclear power that would be needed to produce the liquid fuel. This amount of liquid fuel is then used to estimate the effect of such a program on conventional gasoline usage, need for foreign oil, and decrease in CO2 emissions.We then review the Mobil M process, which is a technique for producing gasoline from methanol. Although methanol and ethanol can be used in cars today, the volumetric energy density of gasoline is much greater, and the infrastructure for gasoline is in place. For this purpose, we feel that the conversion from methanol to gasoline is worth investigating.