ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
B. D. Middleton, M. S. Kazimi, Min Wah Leung
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 64-75
Technical Paper | Special Issue on Nuclear Hydrogen Production, Control, and Management | doi.org/10.13182/NT09-A6969
Articles are hosted by Taylor and Francis Online.
A preliminary study is conducted that considers capturing carbon dioxide from fossil-fired power plants and combining it with nuclear hydrogen in order to produce alternative liquid fuels for transportation.We estimate the quantity of carbon dioxide that would be emitted by fossil-fired power plants in the future. We then use this information to determine how much ethanol or methanol can be created if enough hydrogen is made available. Using the quantity of hydrogen required and the thermodynamics of the reactions involved, we estimate the nuclear power that would be needed to produce the liquid fuel. This amount of liquid fuel is then used to estimate the effect of such a program on conventional gasoline usage, need for foreign oil, and decrease in CO2 emissions.We then review the Mobil M process, which is a technique for producing gasoline from methanol. Although methanol and ethanol can be used in cars today, the volumetric energy density of gasoline is much greater, and the infrastructure for gasoline is in place. For this purpose, we feel that the conversion from methanol to gasoline is worth investigating.