ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Shikha Prasad, Oscar L. Delgado, Alexander Tucker, Sunay Palsole
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 1092-1102
Note | doi.org/10.1080/00295450.2024.2368980
Articles are hosted by Taylor and Francis Online.
A virtual reality learning module to train nuclear engineering students in reactor operations to understand reactor power excursions has been developed. The learning module was taught with an Oculus-2 headset and controllers (now called Meta Quest 2). The class was comprised of 71 undergraduate students, mostly in their fourth year of the nuclear engineering curriculum at Texas A&M University. The learning module simulation of power excursion, called pulsing the reactor, was modeled after the Texas A&M Engineering Experiment Station TRIGA reactor. First, the students visited the TRIGA reactor for pulsing and answered a technical quiz on the subject. Next, the students performed pulsing in the equivalent virtual reality module developed in this work.
One of the primary learning objectives in the laboratory exercise was the role of passive and active safety mechanisms in a rapid reactivity insertion and power excursion. Data from the actual reactor visit showed that most students did not understand a key passive safety mechanism during the reactor visit. However, the students showed a notable improvement in their understanding of the safety mechanisms after the virtual reality reactor visit.
When asked if the virtual reality learning module would have made the quiz at the reactor easier, 96% of the students reported that at least one of the quiz questions would be have been better answerable with the virtual reality module. Students also noted that the virtual reality module needed to expand its scope to include more details and teaching components. Although most students were reluctant to completely replace the pulsing reactor visit with its virtual reality module version available at the time of the study, they appreciated it as a learning reinforcement tool. Student opinion may change more favorably in the future with continued improvements and enhancements of the module.