ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Huanyu Han, Xiaoyu Li, Zhi Chen
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 807-820
Research Article | doi.org/10.1080/00295450.2024.2361194
Articles are hosted by Taylor and Francis Online.
The detection of planetary water and soil elements is a pivotal area of research due to its implications for understanding celestial bodies. Within the realm of planetary sampling missions, attention is predominantly directed toward the shallow surface layers, typically to a depth of 1 m. This paper examines the Moon as a case study, employing Monte Carlo simulations to introduce an active detection methodology that integrates high-energy neutron pulse generators with neutron and gamma detectors. Simulations were made of the albedo neutrons and prompt gamma counts after mitigating the interference of secondary neutrons and gamma rays, which result from the interaction between galactic cosmic rays and the lunar surface.
The depth limit of active neutron detection on the shallow surface is about 100 cm. The cadmium ratio (CdR), the ratio between total neutron counts and counts caused by nonthermal neutrons, facilitates the rapid and accurate water content calculation using a fitted CdR curve. Standard gamma spectra of the associated elements, derived through Monte Carlo simulations, along with the mixed gamma spectra requiring resolution, form the foundation for the spectral analysis. Utilizing the weighted least-squares method to invert gamma spectra facilitates the identification of the content of associated elements. Integrating the analysis of albedo neutron energy spectra with prompt gamma spectra allows for the rapid assessment of the region’s water content and soil conditions. Moreover, this study also explores the impact of variations in the content of associated elements on the determination of water content.