ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Pramatha Bhat, Kendall R. Adams, Stephen J. Herring, Brad Kirkwood
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 790-806
Research Article | doi.org/10.1080/00295450.2024.2361185
Articles are hosted by Taylor and Francis Online.
For deep-space propulsion and interplanetary exploration, the centrifugal nuclear thermal rocket (CNTR) has the ability to achieve a very high specific impulse (Isp) metric beyond that of conventional chemical rockets or solid-core nuclear thermal propulsion systems. The high Isp allows the rocket to use less propellant or achieve a higher velocity for shorter transit times. However, the cylindrical containment structure of a CNTR fuel element encounters extreme conditions, as it houses molten uranium at temperatures exceeding 1408 K, leading to challenges such as dissolution, chemical reactions, and thermal stresses that conventional materials struggle to withstand.
This study aims to address this issue by analyzing appropriate materials for constructing the cylindrical containment component. The operating conditions of the annular porous medium that confines the liquid uranium in the centrifugal fuel element are simulated by conducting a comprehensive one-dimensional numerical analysis using a range of candidate porous materials, including Mo, W, zirconium carbide, and silicon carbide. The porous structure facilitates the flow of the hydrogen propellant into the internal molten uranium section, where it gains significant thermal energy while simultaneously cooling the cylinder. The containment cylinder has an internal temperature of 1478.1 K, exceeding the melting point of uranium, while the external gas temperature of the hydrogen propellant is much lower. This temperature difference induces significant thermal stresses in the cylinder.
The porous containment cylinder made from molybdenum was able to maintain elastic deformation throughout the thickness of the cylinder, showcasing its ability to handle these extreme thermal stress conditions. Tungsten, on the other hand, experienced plastic deformation at the cylinder’s edges and elastic deformation through the middle radial locations. In contrast, the stresses experienced by the ceramic materials far exceeded their failure stress values, leading to brittle failure. These findings will help with the refinement of the CNTR design, edging it closer to practical implementation.