ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. Haroon, E. Nichita
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 768-776
Research Article | doi.org/10.1080/00295450.2024.2357917
Articles are hosted by Taylor and Francis Online.
Operating CANDU reactors have the potential to produce significant quantities of molybdenum-99 (99Mo) because of their ability to be refueled online, high thermal neutron flux, and fuel design flexibility. A new molybdenum-producing fuel bundle (MPB), previously designed for CANDU reactors, has as its principal attribute that it is neutronically and thermal hydraulically equivalent to the standard 37-element fuel bundle typically used in CANDU reactors. Given that the typical irradiation time for MPBs is 20 days while the typical refueling period for a channel is on average 6 months, the refueling strategy needs to be adjusted to accommodate the shorter irradiation time of MPBs.
This study evaluates a new refueling strategy suitable for employing the new MPBs in the core. A full-core, three-dimensional model is constructed in the diffusion code DONJON, and a fueling strategy for achieving the desired weekly yield of 99Mo is developed. The adequacy of the proposed refueling scheme is evaluated using a series of time-average calculations, which show that a small increase in the core reactivity (<0.4 mk) can be expected when irradiating a set of four MPBs in three different fuel channels in the inner region of the core. The small increase in the core reactivity can be managed by slightly increasing the discharge burnup in the non-MPB-bearing fuel channels, thus also improving slightly the fuel utilization in the reactor.