ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Sinem Uzun
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 755-767
Research Article | doi.org/10.1080/00295450.2024.2356331
Articles are hosted by Taylor and Francis Online.
When nanofluids are used as reactor coolants, they provide more effective heat transfer with their increase in thermal conduction properties. This plays an important role in energy production by increasing the efficiency of nuclear reactors. The present study delves into the thermal-hydraulic ramifications of utilizing nanofluids as coolants in the VVER-1000 nuclear reactor. Specifically, the thermal-hydraulic characteristics, encompassing parameters such as coolant temperature and departure from nucleate boiling ratio, were scrutinized in light of the incorporation of magnesium oxide (MgO) and zinc oxide nanoparticles. While performing these analyses, not only uranium but also thorium was used in the core as reactor fuel. Considering the emergence of thorium as a potential fuel material in nuclear technology, its inclusion in the fuel composition contributed to the originality of the research. With the addition of 0.2% MgO nanoparticles to a VVER nuclear reactor using 5% thorium dioxide (ThO2) fuel, the coolant temperature as a result of the channel flow was determined as 617.4 K (while 613.7 K for the light water). When employing thorium fuel (with an equivalent nanoparticle concentration), the maximum temperature exhibited an approximate increase of 3 deg compared to uranium fuel. With the addition of 0.2% MgO nanoparticles, the enthalpy value at the end of the channel was 1303.6 kJ/kg when using 5% ThO2 fuel, while the enthalpy value was determined as 1295 kJ/kg in 3.7% enriched UO2 fuel. As one of the most important results of the analysis, it was observed that the temperature value of the coolant increased when nanoparticles were used.