ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Trevor Melsheimer, Craig Menezes, Yassin A. Hassan
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 725-741
Research Article | doi.org/10.1080/00295450.2024.2348853
Articles are hosted by Taylor and Francis Online.
Flow blockages in Liquid Metal Fast Reactor (LMFR) fuel assemblies that can cause fuel pin cladding failures require further investigation for the development and optimization of these Generation IV reactor designs. The objective of this study was to experimentally evaluate the effects of a porous blockage accident scenario on laminar flow behavior in the interior subchannels of a prototypical 61-pin wire-wrapped rod bundle. The laminar flow condition is considered because of its importance to natural circulation and loss-of-coolant-accident operating scenarios as well as the limited availability of experimental data. The matched-index-of-refraction method was utilized to obtain two-dimension two-component time-resolved particle image velocimetry (TR-PIV) measurements at three planes centered on blocked and neighboring subchannel regions. Time-averaged first-order and second-order statistics, computed by Reynolds decomposition, were visualized including the mean and fluctuating streamwise and spanwise velocity components. Line profiles described the evolution of flow from upstream regions, to separated flow, and recombination downstream, while a modified Galilean decomposition distinguished differences between flow in the blocked measurement plane and flow in its neighboring counterpart region. Spatial-temporal cross-correlations were performed for the streamwise velocity fluctuations to characterize the convection velocity and decay of traveling vortices in the wake of the porous blockage. The isothermal TR-PIV measurements from this study provide high-fidelity experimental data sets for the validation of computational models and numerical studies to characterize complex fluid phenomena in wire-wrapped rod bundles during the potential accident scenario of a porous, interior flow blockage.