ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jianwei Zhang, Tuo Li, Bo Tian, Jinfeng Li, Wenze Li, Abdullah, Nan Zhang, Hongtao Zhao
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 624-634
Note | doi.org/10.1080/00295450.2024.2343116
Articles are hosted by Taylor and Francis Online.
Adsorption is widely regarded as the most promising method for uranium extraction. Among the various materials that have been studied, graphene oxide (GO) has attracted intensive interest because of its large specific surface area and abundant oxygen-containing functional groups. However, the layers tend to aggregate owing to pronounced Van der Waals forces, which reduce the surface area and diminish the likelihood of contact between uranyl ions and adsorption sites. Graphite oxide is an intermediate product of GO, with a simple preparation process and low cost. In this study, graphite oxide nanosheets (GONs) were synthesized using graphite oxide powder as the raw material and the NaOH activation method. GONs possessed a larger specific surface area and more carboxyl groups, which resulted in an excellent uranium adsorption capacity. The maximum adsorption capacity was found to be 578.0 mg·g−1, and the adsorption rate was 90.8% within 30 min. The adsorption process closely resembled the pseudo-second-order model and the Langmuir model. The mechanism of uranium adsorption by GONs was the synergistic coordination of -COOH and -OH with U(VI). This research suggests that the novel uranium adsorbent GONs can be applied to efficiently capture U(VI) from radioactive wastewater.