ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Joeun L. Kot, Theodore Thomas, Jason T. Harris
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 570-583
Research Article | doi.org/10.1080/00295450.2024.2343971
Articles are hosted by Taylor and Francis Online.
Risk assessment involves analyzing potential accident scenarios to identify hazards and assess associated risk factors. Nuclear safety and security both aim to protect against radiation exposure, but they have developed separately with distinct risk assessment methodologies. As a result, there is a need for a comprehensive risk assessment method that covers both the safety and security aspects. The Potential Facility Risk Index (PFRI) was developed in 2020 to provide a quantitative approach to evaluating the security risk of nuclear facilities, but it does not consider safety risks.
This study aims to enhance the PFRI framework by incorporating probabilistic risk assessment methods to include safety risks. It assesses the risk of a hypothetical incident caused by adversaries at a hypothetical nuclear facility after a successful theft of nuclear material, followed by the construction and detonation of a radiological dispersal device. To achieve this goal, the study utilized event tree analysis and pathway analysis for loss event assessment and consequence analysis using the MELCOR accident consequence code systems for loss magnitude. New risk criteria were also established to determine the PFRI risk score.
Based on the results, the study found that the PFRI score for the hypothetical facility was 1, indicating that the risk level was negligible. Future studies incorporating other scenarios, such as sabotage and transportation, will help assess the total security risk of the facility. This method can also help facilitate the integration of risk assessments for nuclear safety and security.