ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Markus Preston, Erik Branger, Vitaly Fedchenko, Sophie Grape, Robert E. Kelley, Vaibhav Mishra, Débora M. Trombetta
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 548-569
Research Article | doi.org/10.1080/00295450.2024.2342184
Articles are hosted by Taylor and Francis Online.
There exist elements apart from uranium and plutonium that could potentially be used to construct the core of a nuclear explosive device. These belong to the so-called minor actinides (MAs), which exist in nonnegligible amounts in spent nuclear fuel (SNF) and are in nearly all cases not covered by international safeguards. Future reprocessing of SNF could result in significant separation of these elements, potentially leading to new proliferation concerns. In this work, a methodology for a transparent assessment of the barriers against proliferation of MAs has been developed and applied to the case of neptunium, americium, and curium separated from spent fuel from pressurized water reactors. In this methodology, openly available data and Monte Carlo simulations have been used to assess the barriers posed by a number of parameters relevant to the production of a nuclear explosive device from SNF. The evaluation shows that the properties of neptunium present low barriers to proliferation and that it should be discussed within the context of future nonproliferation treaties and possibly be placed under international safeguards. The properties of americium and curium present higher barriers to proliferation, meaning that these elements require less focus in the nonproliferation context.