ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hossam H. Abdellatif, Palash K. Bhowmik, David Arcilesi, Piyush Sabharwall
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 531-547
Research Article | doi.org/10.1080/00295450.2024.2342168
Articles are hosted by Taylor and Francis Online.
The Westinghouse Electric Company’s Advanced Passive Reactor (AP1000) is characterized by the incorporation of passive safety systems (PSSs) designed to ensure core cooling during transient events. The assessment of PSSs requires evaluation of their performance through a combination of experiments and simulations employing various thermal-hydraulic codes. In addition, detailed evaluation of PSSs for a specific reactor system transient analysis such as loss-of-coolant-accident analysis supports understanding representative integral effects test facility development and the further evolution model development and assessment process. Developing a reactor system code is a complex and time-consuming process that requires significant engineering expertise and effort. It can take several months to even years to complete in the early stages of reactor system design and analysis. However, this process can be expedited through the use of transient simulator models for similar reactor systems, which can be used for lesson learning and training purposes. This study uses the Personal Computer Transient Analyzer (PCTRAN) code. The main advantage of PCTRAN is its ease of use and ability to run faster than real time. This study presents the results obtained for a small-break loss-of-coolant accident (SBLOCA) for two breaks using the full version (licensed) of PCTRAN. The purpose of this investigation is to evaluate the overall system behavior during the postulated SBLOCA event as well as assess the capability of the PCTRAN code to reproduce the system response during transient events. The obtained results were compared with the Westinghouse NOTRUMP system code. The PCTRAN code proved to be reliable in predicting the qualitative behavior of the system in both transient cases. As for the system response, it was found that it is contingent on the activation time of the PSSs. The differences in reactor coolant system pressure between the two codes were attributed to the critical flow model and simplification of mass and energy balance. Despite PCTRAN’s limitations, it can still provide a reasonable prediction of various reactor parameters such as pressure, mass flow rate, and void fraction during a SBLOCA scenario. It is worth noting that PCTRAN currently employs a bulk approach similar to that of the Modular Accident Analysis Program (MAAP) and MELCOR codes. However, the upcoming version of PCTRAN will include an artificial intelligence–based detection and accident prevention system, as well as different models for different reactor components. Consequently, PCTRAN has the potential to be upgraded to match the system thermal-hydraulic codes of the U.S. Nuclear Regulatory Commission and become more widely used in cybersecurity to safeguard nuclear power plants from cyberattacks.