ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Youngsu Na
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 273-285
Research Article | doi.org/10.1080/00295450.2024.2325738
Articles are hosted by Taylor and Francis Online.
This study evaluates the spatial dilution of hydrogen concentration caused by steam-hydrogen buoyancy jets rising through the open top of the steam generator compartment during a loss-of-coolant accident in the OPR1000, the Korean Standard Nuclear Power Plant. The correlation of the concentration decay rate in the plume with relatively high buoyant flux was applied to estimate the hydrogen concentration in the rise distance of the buoyant jet. The MELCOR code was used to calculate the gas composition and discharge flow rate in the ruptured cold leg during the rapid cladding oxidation to determine the volume and buoyant fluxes that affect the mixing behavior. The concentration decay rate at the plume’s center decreases as the steam-hydrogen binary buoyant jet rises. Despite the assumed initial volume flux and simplified jet nozzle geometry, the decay rate correlation can assess conservatively the diluted hydrogen in a severe accident.