ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Youngsu Na
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 273-285
Research Article | doi.org/10.1080/00295450.2024.2325738
Articles are hosted by Taylor and Francis Online.
This study evaluates the spatial dilution of hydrogen concentration caused by steam-hydrogen buoyancy jets rising through the open top of the steam generator compartment during a loss-of-coolant accident in the OPR1000, the Korean Standard Nuclear Power Plant. The correlation of the concentration decay rate in the plume with relatively high buoyant flux was applied to estimate the hydrogen concentration in the rise distance of the buoyant jet. The MELCOR code was used to calculate the gas composition and discharge flow rate in the ruptured cold leg during the rapid cladding oxidation to determine the volume and buoyant fluxes that affect the mixing behavior. The concentration decay rate at the plume’s center decreases as the steam-hydrogen binary buoyant jet rises. Despite the assumed initial volume flux and simplified jet nozzle geometry, the decay rate correlation can assess conservatively the diluted hydrogen in a severe accident.