ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sarah R. Suffield, William A. Perkins, Ben J. Jensen, Brady D. Hanson, Steven B. Ross
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 241-257
Research Article | doi.org/10.1080/00295450.2024.2324213
Articles are hosted by Taylor and Francis Online.
Deposition models are being developed with the commercial computational fluid dynamics software STAR-CCM+ to evaluate particulate deposition on spent nuclear fuel (SNF) canisters. The primary particulate of concern is chloride salts, which are dispersed in the atmosphere and then deposited onto the canisters. During dry storage, the primary degradation process is likely to be chloride-induced stress corrosion cracking (CISCC) at the heat-affected zones of the canister welds. It is known that stainless steel canisters are susceptible to CISCC; however, the rate of chloride deposition onto the canisters is poorly known, based on sparse field data from a small number of sites.
This paper describes work looking at various approaches to modeling turbulence, such as Reynolds-averaged Navier Stokes (RANS) and large eddy simulation (LES), and its impact on particle flow and deposition within a ventilated SNF storage system. The deposition rate is determined for a vertical canister system and a horizontal canister system. LES has the potential to simulate turbulent flows more accurately versus RANS, but is much more computationally expensive. A k-omega version of the RANS turbulence model was used for this study.
The computational efficient RANS steady-state model predicted a similar canister deposition result as the LES simulation for a vertical canister storage system. For a horizontal storage system, the RANS steady-state model predicted more particles depositing on the canister than the LES simulation, providing a conservative estimation for particle deposition. A wall correction factor was added to the RANS model to dampen the turbulence fluctuation normal to a surface that left undamped, leads to the RANS model overpredicting deposition along a surface for smaller particles.
This work was done to further development of deposition models that could be used to plan and inform SNF canister aging management programs with predictive models for the timing and occurrence of canister CISCC. This work is part of a larger effort tasked with understanding the likelihood of canister degradation due to CISCC. These models are still under development, and testing is needed for validation. However, these models are being presented now to demonstrate to canister vendors, utilities, regulators, and stakeholders the value of this type of modeling.