ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Michel Haag, Iurii Dolganov, Stephan Leyer
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 111-126
Research Article | doi.org/10.1080/00295450.2024.2319933
Articles are hosted by Taylor and Francis Online.
The presented work deals with the improvement of the evaporation model of the ATHLET (Analysis of Thermal and Hydraulics of Leaks and Transients) system code to be applied to a passive containment cooling system of a nuclear power plant. For the model validation, INTRAVIT (Investigation of Passive Heat Transfer in a Variably Inclined Tube) test facility setup at the University of Luxembourg was used. The first part of the paper presents a review of the existing literature on evaporation models that revealed that those models significantly simplify the physical processes that occur. Next, a modified evaporation model is proposed that offers a realistic description of various evaporation processes and the start of bubble formation using a nucleation model, and a surface density calculation model is introduced that is necessary for evaporation simulation. The final part of this work explored five different system configurations to test the evaporation model: three condenser tube inclinations (5 deg, 60 deg, and 90 deg), two riser lengths (1 m and 2.5 m), and different thermal loads. They made it possible to simulate several experiments for stable and unstable natural circulation and to verify the proposed model.