ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Min Gi Kim, Byongjo Yun, Jae Jun Jeong
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 93-110
Research Article | doi.org/10.1080/00295450.2024.2319926
Articles are hosted by Taylor and Francis Online.
We have developed a heat transfer correlation for saturated flow boiling of water in a helically coiled tube. Initially, we collected experimental data encompassing a broad spectrum of thermal-hydraulic conditions and geometric configurations, and examined the influences of key dimensionless parameters, such as the convection number and the boiling number. The data analysis showed that the observed trend aligns with previous studies on boiling heat transfer within a straight tube. Also, we investigated the influence of centrifugal force acting on the fluid in a helically coiled tube and confirmed its significant impact on boiling heat transfer. Based on our findings, we propose a new heat transfer correlation that incorporates a dimensionless number of the centrifugal force divided by gravitational force. The basic structure of this correlation was adapted from the Kandlikar correlation for saturated flow boiling. The new correlation demonstrated enhanced accuracy compared to existing ones. Additionally, we showed its applicability to boiling heat transfer within a straight tube as well.