ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Hangbok Choi, John Bolin, Oscar Gutierrez, Radu Curiac, Mohammad Alavi, Matthew Virgen, Ed Chin, James Beaver, Pascal Brocheny, Geoffrey Beausoleil, Abdellatif M. Yacout, Sal Rodriguez, Michael Corradini, Daejong Kim, Steven L. Krahn, Eric Thornsbury
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 79-92
Research Article | doi.org/10.1080/00295450.2024.2319925
Articles are hosted by Taylor and Francis Online.
The Fast Modular Reactor (FMR) is a 100-MW(thermal) gas-cooled fast reactor being developed by General Atomics Electromagnetic System with the goal of developing a FMR for flexible and dispatchable power to the U.S. electricity market in the mid-2030s. The conceptual design aims to develop and verify simplified design features. These include an inert helium gas coolant, pellet-loaded fuel rods, installations with air cooling as ultimate heat sink, and small and passive heat removal systems. The goal is to ensure the development of a safe, maintainable, cost-effective, and distributed nuclear energy-generating station.
The baseline technologies selected to achieve this goal are a helium coolant that is an inert gas with no chemical reaction with structural components, not activated, single phase, enabling high-temperature operation and a high thermal efficiency Brayton cycle; conventional uranium dioxide (UO2) fuel, which is the most widely used and well-known fuel material, capable of high burnup (100 MWd/kg) and a long fuel life; and silicon carbide composite (SiGA®) cladding and internal structures that are chemically inert in the helium environment, exceptionally radiation tolerant, and being derisked by accident tolerant fuel technology development.
The reactor was specifically designed with passive safety features, including high-temperature in-core materials and a reactor vessel cooling system consisting of cooling panels of naturally circulating water. The passive safety of the core was confirmed for the depressurized loss-of–forced cooling accident, which showed the peak cladding temperature at ~1600°C during the transient, which is below the current design limit of 1800°C. The conceptual design of the FMR has been conducted for the reactor system, vessel system, generator and turbomachine, instrumentation and control, residual heat removal system, plant service system, and containment, as well as pre-application licensing documents.