ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hangbok Choi, John Bolin, Oscar Gutierrez, Radu Curiac, Mohammad Alavi, Matthew Virgen, Ed Chin, James Beaver, Pascal Brocheny, Geoffrey Beausoleil, Abdellatif M. Yacout, Sal Rodriguez, Michael Corradini, Daejong Kim, Steven L. Krahn, Eric Thornsbury
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 79-92
Research Article | doi.org/10.1080/00295450.2024.2319925
Articles are hosted by Taylor and Francis Online.
The Fast Modular Reactor (FMR) is a 100-MW(thermal) gas-cooled fast reactor being developed by General Atomics Electromagnetic System with the goal of developing a FMR for flexible and dispatchable power to the U.S. electricity market in the mid-2030s. The conceptual design aims to develop and verify simplified design features. These include an inert helium gas coolant, pellet-loaded fuel rods, installations with air cooling as ultimate heat sink, and small and passive heat removal systems. The goal is to ensure the development of a safe, maintainable, cost-effective, and distributed nuclear energy-generating station.
The baseline technologies selected to achieve this goal are a helium coolant that is an inert gas with no chemical reaction with structural components, not activated, single phase, enabling high-temperature operation and a high thermal efficiency Brayton cycle; conventional uranium dioxide (UO2) fuel, which is the most widely used and well-known fuel material, capable of high burnup (100 MWd/kg) and a long fuel life; and silicon carbide composite (SiGA®) cladding and internal structures that are chemically inert in the helium environment, exceptionally radiation tolerant, and being derisked by accident tolerant fuel technology development.
The reactor was specifically designed with passive safety features, including high-temperature in-core materials and a reactor vessel cooling system consisting of cooling panels of naturally circulating water. The passive safety of the core was confirmed for the depressurized loss-of–forced cooling accident, which showed the peak cladding temperature at ~1600°C during the transient, which is below the current design limit of 1800°C. The conceptual design of the FMR has been conducted for the reactor system, vessel system, generator and turbomachine, instrumentation and control, residual heat removal system, plant service system, and containment, as well as pre-application licensing documents.