ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE meeting focuses on Marshall Islands’ legacy activity
The Department of Energy Office of Environment, Health, Safety and Security (EHSS) held its annual meeting this month with the government of the Marshall Islands. The two-and-a-half-day meeting, in Honolulu, Hawaii, focused on ongoing cooperative efforts and programs related to the legacy of U.S. nuclear weapons testing from the 1940s and 1950s. The United States began cleanup operations on the islands in the 1970s.
Roberto E. Fairhurst-Agosta, Tomasz Kozlowski
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 66-78
Research Article | doi.org/10.1080/00295450.2024.2319922
Articles are hosted by Taylor and Francis Online.
An accurate assessment of the deposited energy across a reactor geometry allows for a better determination of the heat removal requirements and ensures effective cooling after shutdown. This work discusses several methods in detail that target the heat deposition in specific reactor regions, leading to a choice of a prevalent method for the calculation workflow. This paper introduces a delayed heating calculation workflow based on the formal three-step process. The workflow relies on the MCNP-ORIGEN Activation Automation tool for performing the first two steps of the process, while the third step is conducted via MCNP photon transport simulations. This paper showcases two applications to demonstrate the workflow and simulation outputs. These include an Advanced Test Reactor (ATR) experiment and the RA-6 reactor structures.