ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tengfei Zhu, Yang Liu, Xiaoping Ouyang
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 54-65
Research Article | doi.org/10.1080/00295450.2024.2318049
Articles are hosted by Taylor and Francis Online.
Neutron tomography is an efficient nondestructive testing technique. As a complement to X-ray computed tomography, it has been widely used in various fields. Due to the difficulty of obtaining complete neutron projection data in a high-radiation environment and the high noise characteristics of neutron images, it is difficult to reconstruct a high-quality image using the conventional filtered-back projection (FBP) algorithm. Therefore, research on sparse-view reconstruction algorithms in neutron tomography is needed. To improve the quality of neutron three-dimensional reconstructed images, this paper proposes an algorithm that combines the Simultaneous Algebraic Reconstruction Technique (SART) with Fast Gradient Projection (FGP), where the FGP is an algorithm for image denoising and deblurring based on the discrete total variation (TV) minimization model. The algorithm proposed in this paper is compared with other algorithms (FBP, SART, and SART-TV) by simulated experimental data and real neutron experimental data. The experimental results show that the novel algorithm outperforms the other three algorithms in terms of denoising and retaining detailed structural information.