ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Tengfei Zhu, Yang Liu, Xiaoping Ouyang
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 54-65
Research Article | doi.org/10.1080/00295450.2024.2318049
Articles are hosted by Taylor and Francis Online.
Neutron tomography is an efficient nondestructive testing technique. As a complement to X-ray computed tomography, it has been widely used in various fields. Due to the difficulty of obtaining complete neutron projection data in a high-radiation environment and the high noise characteristics of neutron images, it is difficult to reconstruct a high-quality image using the conventional filtered-back projection (FBP) algorithm. Therefore, research on sparse-view reconstruction algorithms in neutron tomography is needed. To improve the quality of neutron three-dimensional reconstructed images, this paper proposes an algorithm that combines the Simultaneous Algebraic Reconstruction Technique (SART) with Fast Gradient Projection (FGP), where the FGP is an algorithm for image denoising and deblurring based on the discrete total variation (TV) minimization model. The algorithm proposed in this paper is compared with other algorithms (FBP, SART, and SART-TV) by simulated experimental data and real neutron experimental data. The experimental results show that the novel algorithm outperforms the other three algorithms in terms of denoising and retaining detailed structural information.