ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John N. Hamawi, Pedro B. Pérez
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 39-53
Research Article | doi.org/10.1080/00295450.2024.2315362
Articles are hosted by Taylor and Francis Online.
External exposures to airborne radioactivity at nuclear power sites are typically based on semi-infinite clouds with uniform concentrations and corresponding effective dose rate coefficients (EDRCs), along with the simplifying assumption that the radioactive clouds extend to infinity around the receptor of interest. The two regulatory models that are typically employed for finite-cloud adjustments to submersion doses, namely, Regulatory Guide 1.183 for hemispherical clouds and the International Commission on Radiological Protection (ICRP) document ICRP-30 for spherical clouds, were purposely oversimplified to facilitate their implementation. As a result, dose projections can be significantly underestimated under certain circumstances, particularly with radionuclides emitting low-energy photons and/or particles. In addition, these adjustments do not account for scatter radiation off surrounding walls, ceilings, and floors of typical occupational settings.
In recognition of these limitations and for the mitigation thereof, Veinot et al. published an article [Rad. and Environ. Biophy., Vol. 56, p. 453 (2017)] that provided monoenergetic photon, electron, and positron EDRCs based on elaborate Monte Carlo computations for submersion in three typical occupational settings at nuclear facilities (namely, an office, a laboratory, and a warehouse). Included in the article were also EDRCs for exposure to 45 noble gases airborne within the said occupational settings. However, extrapolation of the results to other settings was limited due to geometry variations.
Even so, as described in the present paper, the Veinot et al. article provided the basis for the definition of a straightforward model for extrapolation of the Monte Carlo–derived EDRCs to other occupational settings and radionuclides. The objective of the EDRC extrapolation model in this paper is to provide a simple but comprehensive approach to licensing-basis submersion dose calculations consistent with the recommendations in ICRP Publication 103.
The model is reasonably accurate and applicable to submersion volumes that are smaller than an office and larger than a typical warehouse, as would be needed for control room habitability evaluations. It is emphasized that the model is only suitable for the external dose computation of airborne noble gases and particulates; dose contributions via the inhalation pathway and from direct shine from contaminated surfaces need to be evaluated separately.
The EDRC extrapolation model was programmed into an Excel workbook (OccuSetEDRCs-R0.xlsx) that is available to interested parties; see Supplementary Data section for further details. The model can handle all 1252 radionuclides in ICRP-107 and submersion volumes ranging between about 40 and 4000 m3, with an upper estimated error of about 10% on average for large submersion volumes.