ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Zhouxiang Fei, Callum Manning, Graeme M. West, Paul Murray, Gordon Dobie
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2404-2418
Research Article | doi.org/10.1080/00295450.2024.2337282
Articles are hosted by Taylor and Francis Online.
The conditions of various nuclear power plant facilities are regularly examined through manual inspections. Remote visual inspection is commonly applied and requires engineers to watch lengthy inspection footage and seek anomaly features therein. This is a labor-intensive process as anomaly features of interest usually only appear in very short segments of the original whole video. Therefore, an automated anomaly detection system is preferred to lessen the intensive labor cost in the inspection process. The detection process could also benefit from useful information that could potentially contribute to addressing reasoning traceability.
With a well-prepared training data set of the anomaly feature, a convolutional neural network (CNN) can be developed to automatically detect anomaly indications in the inspection video. However, false-positive detections may occur and can be difficult to remove without seeking manual verification. To overcome this problem, we present a new automated video-level anomaly detection framework that utilizes the latency mechanism to effectively lessen false-positive occurrences, and therefore, increase detection accuracy. In this framework, a CNN-based anomaly classifier first performs initial scanning of the anomaly type of interest in every region of the sampled frames. Then our latency mechanism is applied to refine the initial scanning results by flagging up a region as an “anomaly” indication only when “anomaly” is detected by CNN in the current frame and also in a sequence of previous consecutive frames of the same region.
We present a case study of crack feature detection in superheater inspection videos to illustrate the performance of the proposed framework. The results show that the latency mechanism can effectively remove the original false-positive detections seen in the initial scanning. In order to provide a primary exploration of suggesting possible formats for addressing reasoning traceability, knowledge graphs of the reasoning process in the video-level detection framework are built to provide a better understanding of why a specific section of the video is flagged as anomaly contents by the video-level detection framework.