ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
David Anderson, Jamie Coble
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2373-2386
Research Article | doi.org/10.1080/00295450.2024.2376996
Articles are hosted by Taylor and Francis Online.
The economic operation of small modular reactors will partly rely on managing and reducing inspection and maintenance activities while supporting new operational paradigms like load-following. Turbine control valves throttle the steam from the steam generator into the steam turbine while maintaining the pressure within the steam generator at a constant set point. Degradation of these components could impact the ability to manage electrical power production.
Utilizing the Idaho National Laboratory Hybrid repository and the Oak Ridge National Laboratory TRANSFORM library developed for multiphysics simulations in Dymola/Modelica, an integral pressurized water reactor system was modeled based on the available specifications of the NuScale power module. The effects of various component degradation modes have been implemented into the model in order to simulate faulted plant data during both steady-state and load-following operations. The fault modes resemble different physical fault modes that may occur at an operating nuclear power plant; a leaking turbine control valve and a valve actuator failure due to loss of hydraulic pressure have been implemented.
A neural network autoencoder is employed in conjunction with statistical analysis, namely, simple signal thresholding (SST) or sequential probability ratio testing (SPRT), to identify the presence of a fault. Fuzzy logic is additionally employed in a novel and promising manner to classify the state of the system based on the cumulative sum of the neural network residuals. SST and SPRT are both successfully validated using healthy data and proved capable of identifying both fault types; fuzzy logic identified the false positives and classified the faulted data correctly.