ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Andrew Young, Michael Devereux, Blair Brown, Bruce Stephen, Graeme West, Stephen McArthur
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2362-2372
Research Article | doi.org/10.1080/00295450.2024.2342187
Articles are hosted by Taylor and Francis Online.
To function effectively, nuclear power plants rely on the effective filtration of air, water, and process fluids, examples of which include inlet sea water, reactor coolant, plant drinking water, and moderator purification. Filtration assets degrade over time, which impairs their filtering performance and reduces the flow rate. Being able to determine the remaining useful life (RUL) of a filter could result in benefits, particularly when moving from a time-based to a condition-based maintenance strategy that would optimize the filter replacement procedure and reduce early replacement of filters that are still fit for purpose. For many filter applications, a time-based strategy is sufficient. For strategically important assets, such as fueling machines, there are benefits to be gained from the development of predictive maintenance strategies.
In this paper, we propose a predictive condition-based strategy using differential pressure data as a proxy for filter health. The key objective in this work was the creation of a model that could predict a filter asset RUL. The differential pressure for 7 to 14 days is predicted by a heuristic-based regression model of the history of each filter. This approach has been demonstrated using a civil nuclear generation application but could be applied to wider applications. While this model is still undergoing on-site evaluation, it has been estimated that there will be an operationally significant lifetime cost reduction.