ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Andrew Young, Michael Devereux, Blair Brown, Bruce Stephen, Graeme West, Stephen McArthur
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2362-2372
Research Article | doi.org/10.1080/00295450.2024.2342187
Articles are hosted by Taylor and Francis Online.
To function effectively, nuclear power plants rely on the effective filtration of air, water, and process fluids, examples of which include inlet sea water, reactor coolant, plant drinking water, and moderator purification. Filtration assets degrade over time, which impairs their filtering performance and reduces the flow rate. Being able to determine the remaining useful life (RUL) of a filter could result in benefits, particularly when moving from a time-based to a condition-based maintenance strategy that would optimize the filter replacement procedure and reduce early replacement of filters that are still fit for purpose. For many filter applications, a time-based strategy is sufficient. For strategically important assets, such as fueling machines, there are benefits to be gained from the development of predictive maintenance strategies.
In this paper, we propose a predictive condition-based strategy using differential pressure data as a proxy for filter health. The key objective in this work was the creation of a model that could predict a filter asset RUL. The differential pressure for 7 to 14 days is predicted by a heuristic-based regression model of the history of each filter. This approach has been demonstrated using a civil nuclear generation application but could be applied to wider applications. While this model is still undergoing on-site evaluation, it has been estimated that there will be an operationally significant lifetime cost reduction.