ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Andrew Young, Michael Devereux, Blair Brown, Bruce Stephen, Graeme West, Stephen McArthur
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2362-2372
Research Article | doi.org/10.1080/00295450.2024.2342187
Articles are hosted by Taylor and Francis Online.
To function effectively, nuclear power plants rely on the effective filtration of air, water, and process fluids, examples of which include inlet sea water, reactor coolant, plant drinking water, and moderator purification. Filtration assets degrade over time, which impairs their filtering performance and reduces the flow rate. Being able to determine the remaining useful life (RUL) of a filter could result in benefits, particularly when moving from a time-based to a condition-based maintenance strategy that would optimize the filter replacement procedure and reduce early replacement of filters that are still fit for purpose. For many filter applications, a time-based strategy is sufficient. For strategically important assets, such as fueling machines, there are benefits to be gained from the development of predictive maintenance strategies.
In this paper, we propose a predictive condition-based strategy using differential pressure data as a proxy for filter health. The key objective in this work was the creation of a model that could predict a filter asset RUL. The differential pressure for 7 to 14 days is predicted by a heuristic-based regression model of the history of each filter. This approach has been demonstrated using a civil nuclear generation application but could be applied to wider applications. While this model is still undergoing on-site evaluation, it has been estimated that there will be an operationally significant lifetime cost reduction.