ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Ryan M. Spangler, Mahsa Raeisinezhad, Daniel G. Cole
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2331-2345
Research Article | doi.org/10.1080/00295450.2024.2377034
Articles are hosted by Taylor and Francis Online.
This paper presents research that integrates condition monitoring and prognostics with decision making for nuclear power plant operations and maintenance aimed at reducing lifetime maintenance and repair costs. Additionally, a focal point of this research is to make the decisions explainable to operators, improving the trustworthiness of the decisions from what can be considered a black box model. In this work, we develop and evaluate an explainable, online asset management methodology to help reduce lifetime maintenance and repair costs. Using the latest advancements in condition monitoring, inventory management, deep reinforcement learning, and explainable artificial intelligence methods, we create a predictive maintenance methodology that can optimize the maintenance and spare part management of a repairable nuclear power plant system.
To demonstrate these methods, preliminary studies were conducted on a representative maintenance system undergoing a stochastic degradation process that requires repairs or replacement to continue operation. Using deep reinforcement learning, we were able to reduce maintenance spending by approximately 50% compared to optimized, time-based maintenance strategies for the chosen system. A key component of our methodology is the integration of Shapley values to quantify the contribution of various factors to the decision-making process. This addition enhances the explainability and trustworthiness of our decisions, providing operators with transparent and understandable insights into the rationale behind maintenance strategies. The robustness and resiliency of our decision policy against observation noise were also thoroughly evaluated, demonstrating its effectiveness in uncertain operational environments.