ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Gongbo Chen, Naibin Jiang
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2215-2235
Research Article | doi.org/10.1080/00295450.2024.2312023
Articles are hosted by Taylor and Francis Online.
The heat exchange tubes in the steam generator are susceptible to vibration caused by fluid flow, which can lead to damage to both the tubes and their support structures due to collisions. To enhance the predictive accuracy and cost effectiveness of fluid-elastic instability mitigation, multiple models have been created to circumvent its occurrence.
In this research, a model has been developed to predict fluid-elastic instability in tube arrays by integrating Hassan’s time-domain-solving model with a parameter acquisition method using computational fluid dynamics (CFD) simulations. By utilizing CFD methods, a comprehensive set of tube-in-channel model parameters were acquired. This method eliminates the requirement of empirical parameters obtained through experiments. The acquired parameters were integrated into the time-domain, tube-in-channel model.
This model predicts fluid-elastic stability for a single flexible tube or a bundle of seven tubes within a rigid tube array, accounting for fluid forces in the lift direction. The stability map accurately represents the stiffness effect of flow-induced vibration, agreeing with experimental results and highlighting that the model may effectively utilize parameters obtained from CFD simulations. The combination of the time-domain-solving model and the CFD-based parameter acquisition method has been shown to produce a reliable model.