ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Ryan J. Hoover, Kenji Shimada
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2204-2214
Research Article | doi.org/10.1080/00295450.2024.2312022
Articles are hosted by Taylor and Francis Online.
Transient mitigation for nuclear power plants is essential for safe operation. The fourth industrial revolution brings with it the potential for data-based predictive maintenance and identifying remaining time of life for degrading components. An improvement to predictive maintenance would be to address continued operation with faulty components between the time of identification and eventual replacement. The ability to perform data analysis and contemporary digital control systems allows for data-driven control system actions. A methodology is developed herein to train a neural network that can map desired system performance and current plant component capability to control system settings. Simulations of plant transients were recorded and used to train a neural network. This neural network was tested with different target performance goals. The results show that the trained neural network recommended settings that affected the control system response so as to meet the target performance goals.