ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ryan J. Hoover, Kenji Shimada
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2204-2214
Research Article | doi.org/10.1080/00295450.2024.2312022
Articles are hosted by Taylor and Francis Online.
Transient mitigation for nuclear power plants is essential for safe operation. The fourth industrial revolution brings with it the potential for data-based predictive maintenance and identifying remaining time of life for degrading components. An improvement to predictive maintenance would be to address continued operation with faulty components between the time of identification and eventual replacement. The ability to perform data analysis and contemporary digital control systems allows for data-driven control system actions. A methodology is developed herein to train a neural network that can map desired system performance and current plant component capability to control system settings. Simulations of plant transients were recorded and used to train a neural network. This neural network was tested with different target performance goals. The results show that the trained neural network recommended settings that affected the control system response so as to meet the target performance goals.