ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Robert J. Demuth, Anna L. D’Entremont, Rebecca Smith, Robert L. Sindelar, Travis W. Knight
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2187-2203
Research Article | doi.org/10.1080/00295450.2024.2312019
Articles are hosted by Taylor and Francis Online.
In aluminum-clad spent nuclear fuels, an (oxy)hydroxide layer on the surface of the cladding hosts chemisorbed water formed during reactor and post-discharge exposure to water. Any residual water is susceptible to generating hydrogen via radiolysis, which can be a risk associated with dry fuel storage. Engineering-scale forced helium dehydration (FHD) and vacuum drying tests were conducted on mock-up fuel assemblies that included corroded aluminum surrogate plates to assess the removal of bulk and chemisorbed water. Thermogravimetric analysis was performed on samples of the surrogate plates, both undried control samples used to determine onset temperatures associated with a phase change occurring in the oxide layer and samples from drying tests used to determine the effectiveness of each drying method. Both vacuum drying and FHD processes were capable of removing bulk water. However, FHD was determined to provide additional drying capabilities, including partial removal of chemisorbed water from bayerite due to the higher temperatures during drying. The temperature threshold for partial dehydroxylation of the oxide layer was determined to be around 220°C, meaning any drying methods attempting to remove chemisorbed water must exceed 220°C.