ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Binqi Hao, He Zhou, Xiaofeng Li, Zu’An Wang, Shunyang Li, Pengfei Wang
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2159-2186
Research Article | doi.org/10.1080/00295450.2024.2311978
Articles are hosted by Taylor and Francis Online.
The elliptical U-tube heat exchanger (EUTHE) is widely used in various cooling systems of nuclear engineering for its simple geometrical structure and small space cost. In this paper, a two-phase flow field model of an EUTHE is constructed to analyze the flow characteristics in the elbow zone under different structures with the influence mechanism of droplet motion and liquid film distribution. The Taguchi method is used to investigate the influence of heat transfer performance by structural parameters, and the fitted model is analyzed by regression analysis as well as ANOVA to ensure the accuracy of the prediction results.
The results show that thick tubes have a wider liquid film distribution because they are more difficult to trap droplets, achieving high heat transfer capacity while reducing separation efficiency and pressure drop. In addition, the heat transfer capacity and the pressure drop are mostly improved by the increase of the U-tube cross-section long axis length (L2) at the expense of reduced separation efficiency. The optimal cases for each target were obtained by analyzing the influence mechanism of each structural factor, for example, the largest heating tube section (L1) and the U-tube cross-section long axis length (L2), to determine which will lead to the highest heat transfer capacity, which mainly is due to the fact that an increase in these factors leads to the increment of contact area between the fluid and the wall. This work provides a guideline for the design of EUTHE and brings greater benefits to the development of nuclear engineering.