ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kyra Lawson, Nicholas R. Brown
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2133-2150
Research Article | doi.org/10.1080/00295450.2024.2310911
Articles are hosted by Taylor and Francis Online.
This work presents neutronics models of a small and large fast-spectrum molten chloride-salt reactor. The models are similar to designs being pursued by industry, and they may serve as generic preconceptual and simplified neutronics models that provide information for decision making in licensing-related areas. The two models were created using Serpent, a Monte Carlo neutron transport code, and Moltres, a neutron diffusion core simulator tool. Specifically, this study focused on exploring the applicability of diffusion theory to fast molten salt reactor (MSR) models, the capabilities of an open-source, MSR-oriented simulation tool (Moltres), and optimal energy-group structures.
The proposed two-step method involves group-constant generation with Serpent and a multigroup diffusion solution by Moltres. Three energy-group structures were applied. The accuracy of the solutions was determined through comparisons between the two-step and Monte Carlo flux and multiplication factor solutions.
The findings indicated diffusion theory captures neutronics with minimal error for the large MSR and yielded best results with the 27-group structure. The 27-group structure yielded an average group flux error below 2% and keff agreement between diffusion and transport solutions within 30 pcm. The accuracy of the two-step method decreased for the very small (high-leakage) fast chloride MSR, but the neutronics were captured acceptably well with the 33-group structure.
In addition to exploring the capabilities of Moltres, this work contributes to the sparse literature involving open-source models of fast-spectrum MSRs. Future work is noted as expanding the capabilities of the neutronics models to incorporate thermal hydraulics.