ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Musa Moussaoui, Wade Marcum
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2091-2114
Research Article | doi.org/10.1080/00295450.2024.2309601
Articles are hosted by Taylor and Francis Online.
In the most challenging nuclear power plant accidents, transient critical heat flux (CHF) is a primary phenomenon that drives peak cladding temperature, and ultimately, fuel failure. It has not yet been determined whether the use of steady-state CHF methods can accurately predict transient CHF under the conditions of a blowdown due to a loss-of-coolant accident.
There are limited comprehensive experiments at prototypic conditions. To address this deficiency, a quality separate-effects test facility was built to simulate an electrically heated rod under blowdown conditions. Testing reached full pressurized water reactor thermal-hydraulic conditions. With scaled break sizes as large as a double-end cold leg break, CHF was repeatedly measured with depressurization rates ranging from 7 to 17 MPa s−1.
These measurements at prototypic conditions acquired in a controlled methodology are novel to the body of knowledge. Several steady-state CHF methods and heater models were evaluated using RELAP5-3D simulations and the Dakota framework. The results showed that many steady-state CHF methods performed inadequately, but that recently developed wide-ranged, look-up table methods had the most acceptable results. Additionally, the results showed no significant correlation between prediction accuracy and the depressurization rates tested.