ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Amitanshu Mishra, Paban Kumar Guchhait, Samiran Sengupta
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1932-1951
Research Article | doi.org/10.1080/00295450.2024.2304915
Articles are hosted by Taylor and Francis Online.
Simulation of a station blackout (SBO) scenario was carried out for an open pool–type nuclear research reactor. The SBO transient was analyzed using the best estimate (BE) thermal-hydraulic code RELAP5/MOD3.2 to evaluate the performance of safety systems and inherent thermal inertia provided by the reactor pool in ensuring adequate core cooling during a prolonged SBO condition lasting up to 7 days. This encompasses assessment of cooling provided by battery-operated auxiliary pumps in the initial phase followed by setup of the natural convection cooling mode for the extended period. Best Estimate Plus Uncertainty (BEPU) methodology was applied for assessment of safety margins. This involved estimation of required simulations using the Wilks first-order formulation to achieve results within the tolerance limit of 95/95. Identification of relevant uncertainties and their propagation was carried out; subsequently, a case matrix for 59 simulation runs was generated using the Latin hypercube sampling method. The upper/lower bounds of uncertainty results were analyzed and compared with the BE code results. Later, sensitivity analysis was carried out using sensitivity coefficients generated using the Pearson and Spearman coefficient. The results show that the values of the crucial thermal-hydraulic parameters obtained with the tolerance limit of 95/95 met the acceptance criteria, with adequate safety margins.