ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
“The time is now” to advance US nuclear—Part 1
The Nuclear Regulatory Commission is gearing up to tackle an influx of licensing requests and oversight of advanced nuclear reactor technology, especially small modular reactors.
Weiping Zhang, Yiheng Chen, Wenrui Cheng, Liping Guo, FengFeng Luo
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1925-1931
Research Article | doi.org/10.1080/00295450.2024.2304914
Articles are hosted by Taylor and Francis Online.
Vanadium is a typical low-activation metal and has the advantages of lower neutron irradiation activation, better mechanical properties at high temperature, and higher compatibility with the liquid lithium blanket. However, the effect of helium on the formation of irradiation defects in vanadium has not been adequately explored at low temperatures (below 723 K). Helium ion irradiations of 18 keV up to 0.54 displacement per atom were employed to study the temperature-dependent behavior of irradiation defects in vanadium at 523, 623, and 723 K. Helium bubbles were observed in vanadium under irradiations at all temperatures, but no dislocation loops were observed. With the increase of irradiation temperature, the average size of helium bubbles and swelling increased, and the density of helium bubbles decreased. It is noteworthy that the average size of helium bubbles and swelling increased significantly when the irradiation temperature increased from 623 to 723 K. In addition, pentagonal helium bubbles, helium bubbles nucleated at the grain boundary, and combinations between helium bubbles were observed.