ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sung-Jae Yi, Jin-Hwa Yang, Byong Guk Jeon, Hwang Bae, Hyun-Sik Park, Kwang-Won Seul
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1888-1900
Research Article | doi.org/10.1080/00295450.2024.2304909
Articles are hosted by Taylor and Francis Online.
A thermosiphon is a heat transfer device that utilizes the phase change of a liquid and has a single closed-loop shape in a gravity-dominant field. This can be expressed as a single-step thermosiphon because boiling and condensation occur once per cycle. In contrast, the multistep thermosiphon, introduced for the first time in the field of thermal engineering in this study, is a new heat transfer mechanism in which boiling and condensation occur several times per cycle in a single loop with multiple channels. The new mechanism has a superior heat transfer rate compared to the existing single-step thermosiphon, and the operating pressure of the loop can be lowered. However, as the heat transfer rate increases, the circulation flow in the channel tends to pulsate. This thermohydraulic characteristic was confirmed through theoretical and computational analyses of a two-step thermosiphon.
In this study, an improved concept of an asymmetric two-step thermosiphon was developed that can be applied to heat exchanger design by eliminating pulsating flow while maintaining the advantages of a two-step thermosiphon. The newly proposed heat transfer mechanism, termed the multistep thermosiphon, can be effectively used in the design of heat exchangers in industrial fields. In particular, if the asymmetric two-step thermosiphon is applied to the design of small nuclear reactor containments currently being developed in several countries, there are several advantages associated with the reduction of the containment volume and design pressure.