The siting of nuclear waste is a process that requires consideration of concerns of the public. This report demonstrates the significant potential for natural language processing techniques to gain insights into public narratives around “nuclear waste.” Specifically, the report highlights that the general discourse regarding “nuclear waste” within the news media has fluctuated in prevalence compared to “nuclear” topics broadly over recent years, with commonly mentioned entities reflecting a limited variety of geographies and stakeholders. General sentiments within the “nuclear waste” articles appear to use neutral language, suggesting that a scientific or “facts-only” framing of “waste”-related issues dominates coverage; however, the exact nuances should be further evaluated. The implications of a number of these insights about how nuclear waste is framed in traditional media (e.g., regarding emerging technologies, historical events, and specific organizations) are discussed. This report lays the groundwork for larger, more systematic research using, for example, transformer-based techniques and covariance analysis to better understand relationships among “nuclear waste” and other nuclear topics, sentiments of specific entities, and patterns across space and time (including in a particular region). By identifying priorities and knowledge needs, these data-driven methods can complement and inform engagement strategies that promote dialogue and mutual learning regarding nuclear waste.