ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. F. Schaller, J. Snow, M. Maguire, L. Lemieux, R. M. Katona, J. Taylor, A. Knight, C. R. Bryan
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1658-1671
Research Article | doi.org/10.1080/00295450.2023.2291605
Articles are hosted by Taylor and Francis Online.
Relevant atmospheric corrosion laboratory testing environments were developed to explore the influence of inert dust and seawater on the corrosion susceptibility of stainless steel in spent nuclear fuel dry storage conditions. Measurements from dust collected on in-service dry storage canisters were applied to develop exposure conditions. Three atmospheric exposure conditions, two static and one cyclic, were examined with three different surface coverages: co-deposited large dust and seawater, co-deposited small dust and seawater, and solely seawater.
Stainless steel coupons representative of spent nuclear fuel dry storage canister material were subjected to the various corrosion environments, with the results from exposures up to 1 year presented here. Post exposure, corrosion damage was analyzed using optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Initial observations are presented herein, and potential implications with respect to the influence of inert dust particles on corrosion susceptibility are summarized. In general, the co-deposition of dust and salt resulted in larger pits and exhibited mixed modes of corrosion that were not observed in the no-dust conditions (i.e., crevicing, filiform, and pits within pits). The presence of the inert dust may influence brine spreading and/or act as crevice formers, leading to enhanced corrosion. This study highlights the significance of incorporating dust particulate(s) beyond the deliquescent chemistries to fully evaluate atmospheric corrosion severity.