ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Chaithanya Balumuru, Krishnan Raja, Piyush Sabharwall, Vivek Utgikar
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1593-1601
Research Article | doi.org/10.1080/00295450.2024.2329834
Articles are hosted by Taylor and Francis Online.
Laboratory-synthesized nanocarbon pelletized with titanosilicate (ETS-10) as a support matrix has been investigated for the capture of radioactive iodine present as methyl iodide (CH3I) in the off-gas streams produced during aqueous reprocessing of used nuclear fuel. The mass fraction of carbon in the sorbent matrix was 0.10. The effects of residence time and CH3I concentration were investigated using a continuous flow column setup to quantify the adsorption and desorption capacities of adsorbent under dynamic conditions from an air stream containing CH3I present at concentrations representative of those expected in the off-gas streams. Air with CH3I gas as a source in the column resulted in quantifiable CH3I adsorption with 0.98 mg/g of adsorption capacity. Laboratory-made nanocarbons had a larger adsorption capacity than those of the other carbons reported in the literature. Additionally, the adsorption capacity of nanocarbon on ETS-10 is compared to that of nanocarbon coated on cordierite in previous studies.