ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Rei Kimura, Kazuhito Asano
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1496-1502
Note | doi.org/10.1080/00295450.2023.2299899
Articles are hosted by Taylor and Francis Online.
A novel microreactor, called MoveluXTM, was previously proposed that utilizes heat pipes as the primary heat transfer device and calcium hydride as the moderator. In this core design, the moderator temperature is the critical core operation limit because at high temperatures above 800°C, the hydrogen dissociates from the calcium hydride. The core temperature distribution, therefore, was previously evaluated. However, this evaluation did not consider gamma heating in the core and assumed that power was produced only in the fuel region. By contrast, the moderator region has a power density under realistic conditions due to gamma heating. Thus, the present work considers gamma heating in the core power distribution calculation and evaluates the impact on the moderator temperature. The power density of gamma heating was 1/10th that of the fuel region and around 1/100th that of the core thermal power. This increased the temperature of the moderator by 10 K from the case without considering gamma heating. In addition, this temperature distribution difference did not have an impact on the core criticality. In conclusion, considering the gamma heating, concerns regarding the core design are not suggested.