ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Javiera Cervini-Silva
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1487-1495
Note | doi.org/10.1080/00295450.2023.2295152
Articles are hosted by Taylor and Francis Online.
Bentonites are natural reservoirs of various elements and are of interest because they are sources of thorium and uranium, which are transition elements that provide nuclear energy. The objective of this work was to study the plausible association(s) of these elements with other transition elements of interest. The contents of 18 transition elements (cerium, cobalt, chromium, copper, iron, hafnium, lanthanum, manganese, molybdenum, neodymium niobium, nickel, tantalum, thorium, uranium, vanadium, yttrium, zinc, and zirconium) in 38 bentonites determined experimentally by X-ray fluorescence spectroscopy (XRF) were analyzed.
The contents of the elements were plotted in (x,y) graphs and then fitted to polynomial functions (orders 1 through 6). According to the coefficient of determination (r2: 0.5 ≤ r2 strong, 0.3 ≤ r2 ≤ 0.5 medium, and r2 ≤ 0.3 weak), the contents of thorium, uranium, niobium, and nickel related strongly, thus the presence of niobium and nickel served to predict the presence of detectable concentrations of thorium and uranium. The equations showing higher r2 values were
1. {Th} = 1e-6{Nb}5 − 3e-4{Nb}4 + 1.9e-2{Nb}3 − 5.4e-1{Nb}2 + 7.3{Nb} − 6.3, r2 = 0.53.
2. {Th} = −3e-8{Nb}6 + 9e-6{Nb}5 − 1e-3{Nb}4 + 4.7e-2{Nb}3 − 1.1{Nb}2 + 11.5{Nb} − 16, r2 = 0.54.
3. {Th} = 5e-6{Ni}4 − 1.5e-3{Ni}3 − 1.5e-1{Ni}2 − 5.8{Ni} + 9e+1, r2 = 0.49.
4. {Th} = −7e-8{Ni}5 + 3e-5{Ni}4 − 5.1e-3{Ni}3 + 3.4e-1{Ni}2 − 9.5{Nb} + 1e+2, r2 = 0.56.
5. {Th} = 2e-9{Ni}6 − 8e-7{Ni}5 + 2e-4{Ni}4 − 1.5e-2{Ni}3 − 7e-1{Ni}2 − 1e+1{Ni} + 1e+1, r2 = 0.60.
6. {Th} = −1e-4{U}5 + 1.3e-2{U}4 − 4.3e-1{U}3 + 5.7e-1{U}2 − 2e+1{U} + 5e+1, r2 = 0.54.
7. {Th} = 6e-6{U}6 − 9e-4{U}5 + 4.5e-2{U}4 − 1.1{U}3 + 1e+1{U}2 − 5e+1{U} + 1e+2, r2 = 0.64.
8. {U} = 8e-6{Nb}4 − 1.2e-3{Nb}3 + 4.8e-2{Nb}2 − 4.3e-1{Nb} + 6.8, r2 = 0.48.
9. {U} = 2e-7{Nb}5 − 4e-5{Nb}4 + 2.8e-3{Nb}3 − 7.6e-2{Nb}2 + 1.1{Nb} + 1.9, r2 = 0.5.
10. {U} = 1e-8{Nb}6 − 3e-6{Nb}5 + 2e-4{Nb}4 − 8e-3{Nb}3 + 1.3e-1{Nb}2 − 5.4e-1{Nb} + 5.4, r2 = 0.51.
11. {U} = 1.8e-1{Th} + 2.6, r2 = 0.49; {U} = 1.7e-3{Th}2 − 2.9e-2{Th} + 6.3, r2 = 0.60.
12. {U} = 2e-5{Th}3 − 1.7e-3{Th}2 + 1.4e-1{Th} + 4.5, r2 = 0.58; {U} = −5e-7{Th}4 + 2e-4{Th}3 − 1.5e-2{Th}2 + 5.5e-1{Th} + 1.5, r2 = 0.6.
13. {U} = −7e-9{Th}5 + 2e-6{Th}4 − 1e-4{Th}3 − 3e-4{Th}2 + 2.7e-1{Th} + 2.9, r2 = 0.6.
14. {U} = 2e-9{Th}6 − 8e-7{Th}5 + 1e-4{Th}4 − 8.1e-3{Th}3 − 2.4e-1{Th}2 + 15, r2 = 0.65.
This study provided a joint experimental and theoretical approach to optimize the recovery of thorium and uranium and to save invaluable onsite and off-site natural resources and work time. The findings might expand on other studies reporting the quantification of transition metals on bentonite matrices. For instance, the concentrations of nickel reported in studies using bench techniques could serve as the basis to calculate the contents of thorium.