ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Mark Schvaneveldt, Tyler Williams, Ranon Fuller, Devin Rappleye
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1464-1474
Research Article | doi.org/10.1080/00295450.2023.2299908
Articles are hosted by Taylor and Francis Online.
Chloride volatility processes for purifying actinide and rare earth elements have historically required the use of Cl2 tanks. To minimize the hazards associated with these processes, an apparatus was designed to produce Cl2 via molten salt electrolysis. Within this apparatus, one can generate Cl2, chlorinate metals, and consume excess Cl2. Here, electrode materials were tested for their ability to generate Cl2, the composition of the gaseous electrolysis product was evaluated using a quadrupole mass spectrometer, and a Ce foil sample was successfully chlorinated using the electrochemically generated Cl2.