ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Haibo Lian, Shengqiang Li, Shengyao Jiang, Hongye Zhu
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1414-1426
Research Article | doi.org/10.1080/00295450.2023.2299135
Articles are hosted by Taylor and Francis Online.
In order to study the flow characteristics of an integrated natural circulation reactor under inclined conditions, a typical three-dimensional analysis model of natural circulation was established. The natural circulation under inclined conditions was numerically simulated using the computational fluid dynamics method, and the velocity and temperature distribution characteristics of heat exchangers and mixed-flow channels with different inclined angles were analyzed. The results show that as the inclination angle of the heat exchanger flow rate increases, there is a spatial migration phenomenon corresponding to the direction of the average flow rate. A large inclination angle will lead to a serious deterioration of the natural circulation capacity in the lower channel. Under inclined conditions, there is a phenomenon of temperature stratification in the mixed-flow channel.