ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Charles Forsberg, Andrew Kadak
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1354-1365
Research Article | doi.org/10.1080/00295450.2023.2298157
Articles are hosted by Taylor and Francis Online.
Several high-temperature thermal neutron–spectrum pebble bed reactors are being commercialized. China has started up two helium-cooled pebble bed high-temperature reactors. In the United States, the X-Energy helium-cooled and the Kairos Power salt-cooled pebble bed high-temperature reactors will produce spent nuclear fuel (SNF) with burnups exceeding 150 000 MWd per tonne. The reactor fuel in each case consists of small spherical graphite pebbles (4 to 6 cm in diameter) containing thousands of small TRISO (microspheric tri-structural isotropic) fuel particles embedded in the fuel of zone these pebbles.
The unique isotopic, chemical, and physical characteristics of this high-burnup SNF create a technical case to eliminate safeguards based on the low risk for use in nuclear weapons, while maintaining safeguards in terms of risk for use in radiological weapons. These safeguards could be reduced to the simple counting and monitoring of pebbles in storage. Alternatively, there is the option to create a special category with reduced requirements for this SNF in storage, transport, and disposal. No safeguards would be required for a repository with only this type of SNF. Reactor safeguards are required for fresh fuel, partly burnt fuel, and to identify unconventional pebbles with depleted uranium or other materials that might be used to create weapons-useable materials.