ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ben Lindley
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1319-1335
Research Article | doi.org/10.1080/00295450.2023.2295164
Articles are hosted by Taylor and Francis Online.
Increasing the number of pins within a pressurized water reactor (PWR) assembly reduces pin temperature for a given assembly power. In conjunction with a core retrofit, this presents a potential route to PWR uprate, which is of growing interest given recent increases in electricity prices. However, most PWRs utilize regular lattice designs with fixed guide tube positions, such as the very common 17 × 17 lattice design with 25 guide/instrumentation tubes. These tubes are aligned with penetrations in the reactor pressure vessel, which presents a prohibitive obstacle to retrofit, and more widely, may “lock” many PWRs to this particular fuel configuration.
In this paper, an irregular PWR fuel assembly is proposed. It is shown that a backward-compatible lattice with 324 fuel pins per assembly (BL324), uniform enrichment, and the same hydrogen-to–heavy metal ratio as a reference 17 × 17 assembly with 264 fuel pins can achieve within-assembly power peaking within 2% of the reference assembly under equivalent conditions while fixing the guide tube positions. Power peaking can be further reduced to reach that of the existing fuel assembly by reducing the enrichment of 36 of the pins by 0.2 wt%.
The fuel assembly could potentially either support a significant uprate of up to ~20% in conjunction with low-enriched uranium plus (LEU+) fuel or a more aggressive cycle design, and hence, improved discharge burnup at the same power and batch strategy. A subchannel analysis shows that the coolant heat-up distribution is comparable to the reference assembly. However, the pressure drop is estimated to be 4% higher, which would challenge the performance of transition cores containing both 17 × 17s and BL324s. Further incremental changes to BL324 may be attractive, either to improve manufacturability or to slightly improve performance through formal optimization.