ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ben Lindley
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1319-1335
Research Article | doi.org/10.1080/00295450.2023.2295164
Articles are hosted by Taylor and Francis Online.
Increasing the number of pins within a pressurized water reactor (PWR) assembly reduces pin temperature for a given assembly power. In conjunction with a core retrofit, this presents a potential route to PWR uprate, which is of growing interest given recent increases in electricity prices. However, most PWRs utilize regular lattice designs with fixed guide tube positions, such as the very common 17 × 17 lattice design with 25 guide/instrumentation tubes. These tubes are aligned with penetrations in the reactor pressure vessel, which presents a prohibitive obstacle to retrofit, and more widely, may “lock” many PWRs to this particular fuel configuration.
In this paper, an irregular PWR fuel assembly is proposed. It is shown that a backward-compatible lattice with 324 fuel pins per assembly (BL324), uniform enrichment, and the same hydrogen-to–heavy metal ratio as a reference 17 × 17 assembly with 264 fuel pins can achieve within-assembly power peaking within 2% of the reference assembly under equivalent conditions while fixing the guide tube positions. Power peaking can be further reduced to reach that of the existing fuel assembly by reducing the enrichment of 36 of the pins by 0.2 wt%.
The fuel assembly could potentially either support a significant uprate of up to ~20% in conjunction with low-enriched uranium plus (LEU+) fuel or a more aggressive cycle design, and hence, improved discharge burnup at the same power and batch strategy. A subchannel analysis shows that the coolant heat-up distribution is comparable to the reference assembly. However, the pressure drop is estimated to be 4% higher, which would challenge the performance of transition cores containing both 17 × 17s and BL324s. Further incremental changes to BL324 may be attractive, either to improve manufacturability or to slightly improve performance through formal optimization.