ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Z. Miles, A. Balodhi, T. Seuaciuc-Osorio, J. J. Wall, M. Guimaraes, A. Zevalkink, S. K. Chakrapani
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1279-1294
Research Article | doi.org/10.1080/00295450.2023.2291602
Articles are hosted by Taylor and Francis Online.
Grade 91 steel has been used in nuclear and fossil power plants since the 1970s. Manufacturing variabilities resulting from manufacturing, repair, and management activities have been attributed to lowered creep and fatigue life. This paper characterizes the elastic, thermal, and anelastic properties of P91 steel with different microstructures. Eight different microstructural conditions were identified as acceptable, gross, and gradual degradations. Ultrasonic testing was used to measure velocities, and resonant ultrasound spectroscopy was used to measure internal friction. The thermal diffusivity was measured along with Vicker’s hardness and grain size. A model for internal friction was used to combine the measured elastic and thermal properties. The results suggest that the current understanding of internal friction and its sources may be incomplete for complex microstructures like grade 91. From an nondestructive evaluation perspective, the results suggest that the internal friction has the highest sensitivity to microstructure changes, compared to elastic and thermal properties.