ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
David Reger, Elia Merzari, Paolo Balestra, Sebastian Schunert, Yassin Hassan, Stephen King
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1258-1278
Research Article | doi.org/10.1080/00295450.2023.2218245
Articles are hosted by Taylor and Francis Online.
An in-depth understanding of the flow physics in packed beds is critical for developing simulation tools for pebble bed reactors. Advances in computing power have now made the full-core pebble-resolved computational fluid dynamics simulation of these systems possible. This work presents validation of the velocity and pressure predictions made by the spectral element code NekRS followed by a study of the turbulent kinetic energy and turbulent heat flux budgets. Two cases with corresponding experiments are considered: a bed of 67 pebbles with Re = 1460 and a bed of 789 pebbles with 324 < Re < 1024. Velocity and pressure drop comparisons are performed with the two cases, respectively. Good agreement is found between the experiments and their respective NekRS simulations.
The 67-pebble case was then used to perform a direct numerical simulation to extract the turbulent kinetic energy and turbulent heat flux budget terms. Analysis of the turbulent kinetic energy production revealed large areas of negative production near the bottom surfaces of the pebbles. Further investigation revealed a trend between the average amount of negative turbulent kinetic energy production and the local porosity. These results continue to suggest that inertial effects play a large role in differentiating near-wall flow from bed-interior flow.