ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
David Reger, Elia Merzari, Paolo Balestra, Sebastian Schunert, Yassin Hassan, Stephen King
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1258-1278
Research Article | doi.org/10.1080/00295450.2023.2218245
Articles are hosted by Taylor and Francis Online.
An in-depth understanding of the flow physics in packed beds is critical for developing simulation tools for pebble bed reactors. Advances in computing power have now made the full-core pebble-resolved computational fluid dynamics simulation of these systems possible. This work presents validation of the velocity and pressure predictions made by the spectral element code NekRS followed by a study of the turbulent kinetic energy and turbulent heat flux budgets. Two cases with corresponding experiments are considered: a bed of 67 pebbles with Re = 1460 and a bed of 789 pebbles with 324 < Re < 1024. Velocity and pressure drop comparisons are performed with the two cases, respectively. Good agreement is found between the experiments and their respective NekRS simulations.
The 67-pebble case was then used to perform a direct numerical simulation to extract the turbulent kinetic energy and turbulent heat flux budget terms. Analysis of the turbulent kinetic energy production revealed large areas of negative production near the bottom surfaces of the pebbles. Further investigation revealed a trend between the average amount of negative turbulent kinetic energy production and the local porosity. These results continue to suggest that inertial effects play a large role in differentiating near-wall flow from bed-interior flow.