New developments in porous media modeling have allowed for a new opportunity to implement experimental data for validation and verification. This includes velocity measurements using particle image velocimetry and global pressure drop measurements that are used to produce pressure drop correlations. We conducted such experiments on two very similar facilities of packed spheres by the authors of this paper. The results from the measurements are presented in this paper as a complete experimental study of a packed bed of smooth spheres through a two-prong approach. First, a set of global pressure drop correlations are validated with experimental data and presented as a function of porous Reynolds numbers. Second, the local velocity measurements from three depths spanning 2.4 sphere diameters are presented and further analyzed through the use of a normalized probability distribution function of the time-resolved velocity field. The conclusion of this paper is a suggestion for the results to be used in the creation or validation of computational fluid dynamics porous media models in the measured flow regimes for a packed bed of smooth spheres with an aspect ratio between the sphere diameter and the empty column diameter of 4.4.