ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Stephen King, Thien Nguyen, Yassin Hassan
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1245-1257
Research Article | doi.org/10.1080/00295450.2023.2259699
Articles are hosted by Taylor and Francis Online.
New developments in porous media modeling have allowed for a new opportunity to implement experimental data for validation and verification. This includes velocity measurements using particle image velocimetry and global pressure drop measurements that are used to produce pressure drop correlations. We conducted such experiments on two very similar facilities of packed spheres by the authors of this paper. The results from the measurements are presented in this paper as a complete experimental study of a packed bed of smooth spheres through a two-prong approach. First, a set of global pressure drop correlations are validated with experimental data and presented as a function of porous Reynolds numbers. Second, the local velocity measurements from three depths spanning 2.4 sphere diameters are presented and further analyzed through the use of a normalized probability distribution function of the time-resolved velocity field. The conclusion of this paper is a suggestion for the results to be used in the creation or validation of computational fluid dynamics porous media models in the measured flow regimes for a packed bed of smooth spheres with an aspect ratio between the sphere diameter and the empty column diameter of 4.4.